Some translation-invariant Banach function spaces which contain c0
نویسندگان
چکیده
منابع مشابه
On c0-saturated Banach spaces
A Banach space E is c0-saturated if every closed infinite dimensional subspace of E contains an isomorph of c0. A c0-saturated Banach space with an unconditional basis which has a quotient space isomorphic to l2 is constructed. A Banach space E is c0-saturated if every closed infinite dimensional subspace of E contains an isomorph of c0. In [2] and [3], it was asked whether all quotient spaces ...
متن کاملC0-semigroups of linear operators on some ultrametric Banach spaces
C0-semigroups of linear operators play a crucial role in the solvability of evolution equations in the classical context. This paper is concerned with a brief conceptualization of C0-semigroups on (ultrametric) free Banach spaces E. In contrast with the classical setting, the parameter of a given C0-semigroup belongs to a clopen ball Ωr of the ground field K. As an illustration, we will discuss...
متن کاملDual Banach Spaces Which Contain an Isometric Copy of L1
A Banach space contains asymptotically isometric copies of `1 if and only if its dual space contains an isometric copy of L1.
متن کاملOn a Metric on Translation Invariant Spaces
In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.
متن کاملEMBEDDING FUNCTION SPACES INTO `∞/c0
We show that if the space `∞/c0 contains an isometric copy of every function space over a first countable compactum or every function space over a Corson copactum of weight not exceeding the continuum then every subset of R belongs to the σfield generated by sets of the form A1×A2.We prove a similar result about isomorphic rather than isometric embeddings into `∞/c0 in terms of the σ-field of s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2004
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm163-2-3